If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-40t-51=0
a = 4; b = -40; c = -51;
Δ = b2-4ac
Δ = -402-4·4·(-51)
Δ = 2416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2416}=\sqrt{16*151}=\sqrt{16}*\sqrt{151}=4\sqrt{151}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{151}}{2*4}=\frac{40-4\sqrt{151}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{151}}{2*4}=\frac{40+4\sqrt{151}}{8} $
| 6x—8=—3x+1 | | 0.67(x+4)-8=2 | | 9x×3=14 | | 3.9w-`7.9=-2.3 | | 17=5y=3 | | 1.4w-45.3=12.1w+40.3 | | 10y+57=23 | | y/3-1=-5 | | -2k-7=23 | | (3x-20)=(2x+10) | | 5x2-27x-18=0 | | 6q-32=16q | | 6/(x+2)=9/10 | | 1/4x+6=2 | | 0.35a-a=0.03(5a+4)= | | -h+8=-h+9 | | 28=2(-3x-1) | | 28=2(-3x-1 | | 2x-1÷x+2+x+2÷2x-1=10/3 | | 8n(6n+5)=11 | | X+1÷x=26/5 | | 2(3–1)=y | | 5k+4=5k+7 | | 25x=21x-28 | | 7x+2=10x-3 | | b+3/2*2/3,b=20 | | 4x+7-2x=3x-8 | | n^2+8n+20=8 | | 90x-18=90x+18 | | 9x-18=90+18 | | 2x2+17x+27=18/x | | -6y-27=-37-4y |